2015北京考试岗位能力指导:植树问题及变形
在军队文职考试岗位能力数学运算中,有一类植树问题,这类题目没有什么解题技巧,而是利用对应的公式就可以很容易的解答,那么,接下来国家军队文职考试网就帮考生总结一下植树问题所用到的公式以及怎么应用。一、植树问题的类型和应对公式例如:在一周长为100米的湖边种树,如果每隔5米种一棵,共要种多少棵树?这样在一条“路”上等距离植树就是植树问题。在植树问题中,“路”被分为等距离的几段,段数=总路长÷间距、总路长=间距×段数。根据植树路线的不同以及路的两端是否植树,段数与植树的棵数的关系式也不同,下面就从不封闭路线的植树和封闭路线植树来一一说明。(1)不封闭植树:指在不封闭的直线或曲线上植树,根据端点是否植树,还可细分为以下三种情况:①两端都植树:两个端点都植树,树有6棵,段数为5段,即有植树的棵数=段数+1,结合段数=总路长÷间距,则:棵数=总路长÷间距+1,总路长=(棵数-1)×间距。②两端都不植树:两个端点都不植树,可知植树的棵数=段数-1,结合段数=总路长÷间距,则:棵数=总路长÷间距-1,总路长=(棵树+1)×间距。③只有一端植树:只有一个端点植树,可知植树的棵数=段数,结合段数=总路长÷间距,则:棵数=总路长÷间距,总路长=棵数×间距。(2)封闭植树:指在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数。所以棵数=总路长÷间距,总路长=棵数×间距。二、两边植树问题除了在路的一边植树外,还有路的两边都植树的情况,这时就要先判断出植树类型,计算出一边植树的情况,再根据一边求两边情况。解析:此题答案为C。共需要架设30×1000÷500+1=61根电线杆。三、不同间隔植树问题在一些植树问题中,往往存在两种或多种植树方式。这种情况下,就会出现重复植树问题,常需要结合最小公倍数找出重合点。A.8B.9解析:此题答案为D。每隔3米打一木桩对应每隔3米植树,两端都打对应两端都植树,因此直道的总长=段数×间距=(棵数-1)×间距=(49-1)×3=144米。依题意,不拔出来的木桩距离起点的距离必须能被3和4整除,3和4的最小公倍数是12,即从起点开始每隔12米有一个木桩可以不拔出,144÷12=12,故有12+1=13根木桩不用拔出。四、植树问题变形在数学运算中还有一些变形题,如锯木头、走楼梯等实际问题,这些变形只是形式上的改变,其本质仍然是植树问题。中公教育专家发现,在最近几年的岗位能力考试中,植树问题往往以这种变形题出现。解决植树问题的变形题,要注意端点是否“植树”,分清“棵数”与“段数”之间是+1还是-1。常见的变形题:锯木头、爬楼梯、重合、队列问题均可视为两端都不植树问题,其中的知识要点如下:锯木头:要锯成n段,则需锯(n-1)次;爬楼梯:从1层到n层,需爬(n-1)段楼梯;若每爬完一段,休息一次,则需休息(n-2)次;重合问题:n段接在一起,重合的有n-1段;队列问题:有n个人(或n辆车),中间有n-1个空。A.3B.4C.6D.8解析:此题答案为D。要求钢管被锯的段数,必须首先求出钢管被锯开几处。从上图我们可以看出钢管有28÷4=7处被锯开,因而锯开的段数有7+1=8段。题中被锯开的地方即植树位置,因此问题相当于“两端都不植树”问题,棵数=段数-1。上面几道例题基本套用公式,分清楚类型就可以迅速作答了。希望可以帮助考生把植树问题的解题思路理清,以后再碰到这类问题就不会再花费大量的时间了。岗位能力更多解题思路和解题技巧,可参看。
北京考试岗位能力指导:盈亏问题
盈亏问题在国家军队文职考试中出现得比较少,但是在各省市的军队文职考试中出现得比较多,相信在以后的考试中还是会有所出现。这类题型比较简单,考生只需要记住公式即可。二、题型介绍盈亏问题早在我国古代数学名着《九章算术》中的第六章——盈不足章节中就曾记载,盈就是有余,亏就是不足的意思。把一定数量的物体分给若干个对象,按某种标准分,结果刚好分完,或多余(盈),或不足(亏),再按另一种标准分,又出现分完、多余或不足的结果,根据每次的结果来求物体以及分配对象的数量的问题,就称为盈亏问题。盈亏问题的常见题型为给出某物体的两种分配标准和结果,来求物体和分配对象的数量。由于每次分配都可能出现刚好分完、多余或不足这三种情况,那么就会有多种结果的组合,这里以一道典型的盈亏问题对三种情况的几种组合加以说明。现有一筐苹果,不知道有多少个,一群小朋友,也不知有多少人,把这些苹果平分给这些小朋友,根据每组的两个条件,求出苹果和小朋友的人数。1.一盈一亏如果每人分9个苹果,就剩下10个苹果;如果每人分12个苹果,就少20个苹果。2.两次皆盈如果每人分8个苹果,就剩下20个苹果;如果每人分7个苹果,就剩下30个苹果。3.两次皆亏如果每人分11个苹果,就少10个苹果;如果每人分13个苹果,就少30个苹果。4.一盈一尽如果每人分6个苹果,就剩下40个苹果;如果每人分10个苹果,就刚好分完。5.一亏一尽如果每人分14个苹果,就少40个苹果;如果每人分10个苹果,就刚好分完。无论根据以上哪组条件,都可以求出有小朋友10人,苹果100个。解决这类问题的关键是要抓住两次分配时盈亏总量的变化,经过比对后,再来进行计算。三、解题方法(一)公式法针对每一种题型,我们都有固定的公式来解决。实际上盈亏问题一般都是一种货物的两种分配方法,我们可以总结一下:人数=两次分配的剩余/亏欠的货物数之差÷两次分配中每个人得到的货物数之差大家可以尝试着用上面的公式来解下面这些题:例题1:现有一筐苹果,不知道有多少个,一群小朋友,也不知有多少人,把这些苹果平分给这些小朋友,根据以下不同条件,求出苹果和小朋友的人数。(1)如果每人分9个苹果,就剩下10个苹果;如果每人分12个苹果,就少20个苹果。(2)如果每人分8个苹果,就剩下20个苹果;如果每人分7个苹果,就剩下30个苹果。(3)如果每人分11个苹果,就少10个苹果;如果每人分13个苹果,就少30个苹果。(4)如果每人分6个苹果,就剩下40个苹果;如果每人分10个苹果,就刚好分完。(5)如果每人分14个苹果,就少40个苹果;如果每人分10个苹果,就刚好分完。(1)小朋友有(10+20)÷(12-9)=10人,苹果有9×10+10=100个。(2)小朋友有(30-20)÷(8-7)=10人,苹果有8×10+20=100个。(3)小朋友有(30-10)÷(13-11)=10人,苹果有11×10-10=100个。(4)小朋友有40÷(10-6)=10人,苹果有6×10+40=100个。(5)小朋友有40÷(14-10)=10人,苹果有14×10-40=100个。(二)方程法如果不愿意记公式的话,我们也可以直接用方程法来解题。例题2:某班去划船,如果每只船坐4人,就会少3只船;如果每只船坐6人,还有2人留在岸边。问有多少个同学?四、题型精讲(一)直接计算型这类题可以直接对应到上面公式中所说的其中一个类型,直接代入公式就可以得到答案。例题3:在一次救灾扶贫中,给贫困户发放米粮。如果每个家庭发50公斤,那么多230公斤;如果每个家庭发60公斤,那么少50公斤。问这批粮食共()公斤。例题4:士兵背子弹作行军训练,若每人背45发,则多680发;若每人背50发,则还多200发。问有子弹多少发?需要注意的是,军队文职考试中最常见的是“一盈一亏型”。(二)条件转换型这类题目直接套公式是得不到答案的,需要我们把已知条件换一种说法,将它转化成为上述五种标准形式中的一种才可以。例题5:有个班的同学去划船,他们算了一下。如果增加一条船,正好每条船可以坐8人;如果减少一条船,正好每条船可以坐12人,问这个班共有几名同学?例题6:一单位组织员工乘坐旅游车去泰山,要求每辆车上的员工人数相等。起初,每辆车上乘坐22人,结果有1人无法上车;如果开走一辆空车,那么所有的游客正好能平均乘坐到其余各辆旅游车上。已知每辆车上最多能乘坐32人,请问该单位共有多少员工去了泰山?人人人人例题7:某单位以箱为单位向困难职工分发救济品,如果有12人每人各分7箱,其余的每人分5箱,那么余下148箱;如果有30人每人各分8箱,其余的每人分7箱,那么余下20箱。由此推知该单位共有困难职工:人人人人五、小结1.盈亏问题核心是抓住两次盈亏量的变化,利用对应的公式求解。2.有些题目不是标准的盈亏问题,可进行转化后再利用公式求解。3.若题目较复杂,不好直接利用公式,可利用方程法求解。4.盈亏问题可以与其他题型复合,可结合数字特性等进行求解。岗位能力更多解题思路和解题技巧,可参看。
2019北京军队文职招考考试军队文职岗位能力数量关系之青蛙是如何跳井的?
何为青蛙跳井?青蛙又是如何跳井的?很多人看到这个题目可能会很懵,我们为什么要考虑这个问题?其实,这与我们公考考试中的一类题型有关。在中,经常有这样一类题型:工程问题中出现正负工作效率交替的合作问题。这类题型非常类似于青蛙跳井的过程,因此我们称之为青蛙跳井问题。为了能够更好的理解和掌握这类题目,我们先了解一下标准的青蛙跳井模型,再通过标准模型掌握青蛙是如何跳井的。一、标准青蛙跳井问题1、模型:现有一口高10米的井,有一只青蛙坐落于井底,青蛙每次跳的高度为5米,由于井壁比较光滑,青蛙每跳5米下滑3米,这只青蛙几次能跳出此井?(1)分析青蛙跳井问题:我们明显发现,青蛙在运动过程中一直是上跳下滑,具有周期性、循环性,在每一个周期之中,青蛙都会先向上跳跃5米,再向下滑动3米,所以在完整的一个循环周期内,青蛙实际向上跳跃运动了2米。(2)我们可以想到,青蛙在跳出井口的一瞬间一定是在向上运动的过程,而不是先跳出到空中再回落到井口。所以我们要首先将向上运动过程的5米距离预留出来,此处5米就称作预留量。(3)剩余的预留高度五米需要几个周期才能达到呢?我们可以用52=2.5个周期达到,向上取整为3个周期。(4)在3个周期之后,这只青蛙到达了6米的高度。再跳一次,就可以跳出井口了。通过上述分析,我们知道青蛙跳井问题有两个关键特征:2、关键特征:(1)周期性;(2)周期内工作效率有正有负。经过上面的学习,我们可以通过练习一道变形题目来加以巩固。例:单杠上挂着一条4米长的爬绳,小赵每次向上爬1米又滑下半米,问小赵几次才能爬上单杠?(1)一周期中,小赵先先向上1米,再下滑0.5米。所以一个完整的周期小赵会向上运动0.5米。(2)小赵上单杠一定是在向上运动过程,所以预留峰值一米长度。(3)剩余三米,需要留个完整周期达到。(4)最后一米再爬一次,故共七次到达单杠。二、青蛙跳井与工程问题结合----有负效率的交替合作这类工程问题当中,由于存在了负效率,就类似于先向上爬又下滑的青蛙跳井问题。我们用一道经典模型题目来进行了解:一水池有甲和乙两根进水管,丙一根排水管。空池时,单开甲水管,5小时可将水池注满水;单开乙水管,6小时可将水池注满水;满池水时单开丙管,4小时可排空水池。如果按甲、乙、丙......的顺序轮流各开1小时,要将水池注满水需要多少小时?(1)此题目所求为乘除关系,且对应量未知,可以先设特殊值从而简化运算。一般可以将工作总量设为时间的最小公倍数,设为60。则我们可以得出甲管的效率为12,乙效率10,丙效率-15。那么完整的一个周期是由甲乙先注入水,丙再排水,效率和为7。效率峰值达到22。(2)注满池水,一定是在甲乙两管做正效率的过程中发生的。所以先预留出22。剩余38需要注入。(3)38的水量需要6个完整的循环才能达到。(4)六个循环后,共注入水量42。还剩18需要注入。(5)18需要甲注入一小时,乙注入0.6小时。(6)共计19.6小时。这就是我们工程问题当中最常考的一类青蛙跳井问题的题目,题型解答过程相对固定套路化,只是在问题的最终问法对象上稍有不同,我们只要加以区别即可。综上所述,我们经过观察无论是经典的青蛙跳井问题,还是青蛙跳井在工程问题中的变形,其本质都是一个循环问题,因此我们在做此类题目时一定要注意以下两个关键点:(1)最小循环周期;(2)一个循环周期内的效率和。只要抓住这两个关键点,我们就能够更加熟练顺畅的解决好青蛙跳井问题及其变形题目。