2018年军队文职人员招聘岗位能力备考技巧:和定最值问题
近几年军队文职考试考试中容易出现和定最值问题,学习好和定最值问题有利于提高在2018年军队文职考试岗位能力考试中的竞争力,提高应试技巧和能力。主要从以下几个方面来认识和学习。 1、什么是和定最值 和定最值:多个数的和一定,求其中某个数的最大值或最小值问题。 2、和定最值中的8种问法及对应的解题要点。 采用逆向求值的思想,若要使某个量大,其余量尽可能小。 3、常见类型 (1)同向极值问题: 1求最大量的最大值:让其他值尽量小。 例:21棵树载到5块大小不同的土地上,要求每块地栽种的棵数不同,问栽树最多的土地最多可以栽树多少棵? 解析:要求最大量取最大值,且量各不相同,则使其他量尽可能的小且接近,即为从1开始的公差为1的等差数列,依次为1、2、3、4,共10棵,则栽树最多的土地最多种树11棵。
例:6个数的和为48,已知各个数各不相同,且最大的数是11分,则最小数最少是多少? 解析:要求最小数的最小值,则使其他量尽可能的大,又因为各数各不相同,那么其余5个数为差1的等差数列,依次为11、10、9、8、7,和为45,还余3,因此最小数最少为3。 (2)逆向极值问题: 1求最大量的最小值:让各个分量尽可能的均等,且保持大的量仍大、小的量仍小。 例:现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得几朵鲜花? 解析:要使分得鲜花最多的人分得的鲜花数量最少,则要使每个人分得的鲜花数尽可能的接近。按照平均值依次分配2、3、4、5、6,正好分了20朵,还剩1朵,只能分给最多的人,因此最多的人最少分得7朵鲜花。
某单位2011年招聘了65名毕业生,拟分配到该单位的7个不同部门。假设行政部门分得的毕业生人数比其他部门都多,问行政部门分得的毕业生人数至少为多少名? 解析:答案为B。要使分得毕业生人数最多的行政部门人数最少,则其余部门人数尽可能多,即各部门人数尽量接近(可以相等)。从人数最少的选项开始验证,当行政部门有10人时,其余各部门共有65-10=55人,平均每部门人数超过9人,即至少有1个部门人数超过9人,与行政部门人数最多的题干条件不符。若行政部门有11人,其余部门总人数为54人,每个部门可以是9人,满足题意。 ②求最小量的最大值:让各个分量尽可能的均等,且保持大的量仍大、小的量仍小。 例:现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最少的人最多分得几朵鲜花?
按照平均值依次分配2、3、4、5、6,正好分了20朵,还剩1朵,只能分给最多的人,因此最少的人最多分得2朵鲜花。 ③求分配份数的最大值:让各个分量尽可能的均等,且保持小的量尽可能小。 例1.电视台要播放一部30集电视连续剧,如果要求每天安排播出的集数互不相等,该电视剧最多可以播多少天? 解析:欲使播放的集数最多,则每天播放的集数必须尽可能小且接近。可以假设每天播放的集数分别为1、2、3、4、5、6,和为21,则接下来就只能为9,或者为1、2、3、4、5、7、8。无论哪种情况,最多可以播的天数都为7天。 ④求分配份数的最小值:让各个量尽可能的均等,且保持小的量尽可能大。 例:电视台要播放一部30集电视连续剧,如果要求每天安排播出的集数互不相等,一天最多播放10集,则该电视剧最少可以播多少天?
可以假设每天播放的集数分别为10、9、8,播了27集,剩下的3集一天播完,最少播4天。 (3)混合极值问题:同时需要考虑同向极值与逆向极值的问题 ①求第N大的数的最大值(N即不是最大,也不是最小,如第二大的数的最大值):让其他值尽量小。 例1:有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,且分得鲜花数最多的人不超过7朵,则分得鲜花第二多的人最多分得几朵鲜花? 解析:要使分得鲜花第二多的人分得的鲜花数量最多,则要使其他人分得的鲜花数量尽可能的少,比他少的依次为1、2、3,分了6朵花,剩余15朵花分给第二多和最多的人,两人分别为7朵和8朵,因此第二多的人最多分得7朵鲜花。 例人参加七项活动,已知每个人只参加一项活动,而且每项活动参加的人数都不一样。
解析:要求第四多的活动参加人数最多,则其他活动参加人数尽可能少,则前三项活动参加人数为1、2、3,还有94人,分给后四项活动,人数尽可能的接近,944=232,则后四项活动人数依次为22、23、24、25。因此参加活动第四多的活动最多有22人。 ②求第N大的数的最小值(N即不是最大,也不是最小,如第二大的数的最大值) 例1.有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,且分得鲜花数最多的人不超过7朵,则分得鲜花第二多的人最少分得几朵鲜花? 解析:要使分得鲜花第二多的人分得的鲜花数量最少,则要使其他人分得的鲜花数量尽可能的多,最多的人分7朵,还余下14朵。14朵花分给4个人使最多的人最少,使4个人的数量尽可能的接近,依次为2、3、4、5,正好14朵,因此第二多的人最少分得5朵鲜花。
一次数学考试满分为100分,某班前六名同学的平均分为95分,排名第六的同学得86分,假如每个人得分是互不相同的整数,那么排名第三的同学最少得多少分? 解析:答案为C。为使排名第三的同学得分最少,就应使其他同学得分尽可能多。即令前两名同学分别得100分和99分,则剩下的三名同学的总分为956-100-99-86=285分;2853=95分,第三名的同学和第四、第五的同学的分差尽可能小,则分别为96、95和94分。 例3.某机关20人参加百分制的普法考试,及格线为60分,20人的平均成绩为88分,及格率为95%。所有人得分均为整数,且彼此得分不同。问成绩排名第十的人最低考了多少分? 解析:答案人的总分是2088=1760,不及格的人数为20(1-95%)=1人,则他的分数最高为59分;
当第10名分数是88分时,剩余10人总分最多是88+87++79=835分,不能满足题意;当第10名分数是89分时,剩余10人总分最多是89+88++80=845分,符合题意。因此,排名第十的人最低考了89分,选B。 ③求最大量的最大值,(未限定其它量,但给出了最大量与其它量的不等式关系),最大量最大时其它量都同样小。 例1.5个箱子总重50公斤,且重量排在前三位的箱子总重不超过重量排在后三位的箱子总重的1.5倍,问最重的箱子重量最多是多少斤? 解析:要使最重的箱子重量尽可能大,则其余箱子重量尽可能小,最极端情况为其余九个箱子都相等。因此设排在后九位的箱子的重量均为x公斤,可知排在第一位的箱子的重量为。
5(200/23)=500/23公斤。 一般情况下,单纯考同向极值问题的题目较少,逆向极值和混合极值较多。在做题的时候要注意题干中的限定条件,是否有这些数各不相同的条件以及是否对某些量进行了限定,这是非常关键的。希望能够给广大考生一些帮助!
军队文职招聘《常识判断》通关试题每日练(2018年01月26日-977) - 常识判断
军队文职招聘《常识判断》通关试题每日练(2018年01月26日-977)减小字体增大字体
第2篇军队文职招聘《言语理解》通关试题每日练(2018年01月26日-1994)1:这不奇怪,普通民众的宗教狂热惯常地拒绝理性,迟早会滑入荒唐的______之中,于是它也快速地产生质变,回归于原始宗教的愚昧状态,失去了内在的精神力量和外部的传播力量,_____。填入划横线部分最恰当的一项是()。
单项选择题
A、猜想病人膏肓
B、臆想奄奄一息
C、臆断苟延残喘
D、臆造行将就木
2:依次填入下面一段文字横线处的语句,衔接最恰当的一组是()。印象中,成熟的向日葵,花盘都是低垂的,__________。__________,__________,__________。__________,__________。①一阵晨风拂过②可我家的这几株向日葵初出茅庐⑧所以有诗人赞叹,愈是成熟,愈是谦虚④在绿叶一片低沉而嘈杂的合唱中,传出她们清亮而高亢的欢叫⑤依然高昂着头,开心而单纯地笑着,就像稚气未脱的乡野小妹