2020年军队文职人员招聘岗位能力备考:牛吃草问题解题思路

军队文职人员招聘中数量关系是必考的题型之一,数量关系中常考的题型有很多,考生都认为这是数学中困难的一门课,虽然存在一定的困难,但是有一些模型是可以掌握的,此篇重点讲解行程问题中牛吃草问题。牛吃草问题只要大家能够吃透题型,做起来还是比较简单的。 首先牛吃草问题又称为消涨问题,草在不断的生长且生长的速度固定不变,牛在不断吃草且每头牛每天吃的草量相同,供不同数量的牛吃,需要用不同的时间,给出牛的数量,求时间。 其次如何解决呢,简单来说就是牛吃草问题转化为相遇或追击及模型来考虑。 数量关系中牛吃草问题常见的考法有如下几个: (1)标准牛吃草问题,同一草场上的不同牛数的几种不同吃法,其中草的总量、每头牛每天吃草量和草每天的生长数量,三个量是不变的,这种题型较为简单,直接套用牛吃草问题公式即可。

追及一个量使原有草量变大,一个量使原有草量变小 原有草量=(牛每天吃掉的草-每天生长的草)天数 例如:牧草上有一片青青的草,每天牧草有匀速生长,这片牧草可供10头牛吃20天,或者可供15头吃10天,可供25头牛吃几天? 解析:牛在吃草,草在匀速生长,所以是牛吃草问题中的追击问题,原有草量=(牛每天吃掉的草-每天生长的草)天数,设每头牛每天吃的草量为1,每天生长的草量为X,可供25头牛吃T天,所以(10-X)20=(15-X)10=(25-X)T,先求出X=5,再求得T=5。 B.相遇两个量都使原有草量变小 原有草量=(牛每天吃掉的草+其他原因每天减少的草量)天数 例如:随着天气逐渐冷起来,牧草上的草不仅不长大,反而以固定的速度在减少,已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天,照此计算,可供多少头牛吃10天?

在军队文职人员招聘中的具体题目我们一起来看一下。 (2013年军队文职人员招聘)河段中的沉积河沙可供80人连续开采6个月或60人连续开采10个月。如果要保证该河段河沙不被开采枯竭,问最多可供多少人进行连续不间断的开采?(假定该河段河沙沉积的速度相对稳定)