军队文职招考数量关系万能解法:行程问题之相遇问题
从历年的考试大纲和历年的考试分析来看,数学运算中的行程问题一直是常考的一类题。行程问题分为相遇问题,追及问题和流水问题。每一类问题的题型都有相应的解法,只有熟练掌握这些解法,才能提高我们的解题速度,节约时间,在考试中考出优异的成绩。下面京佳教育专家就行程问题中的相遇问题做专项的讲解。 行程问题的准备知识 行程问题中的相遇问题和追及问题主要的变化是在人(或事物)的数量和运动方向上。相遇(相离)问题和追及问题当中参与者必须是两个人(或事物)以上;如果它们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。 相遇(相离)问题的基本数量关系: 速度和相遇时间=相遇(相离)路程 在相遇(相离)问题和追及问题中,考生必须很好的理解各数量的含义及其在数学运算中是如何给出的,这样才能够提高解题速度和能力。
例1.某校下午2点整派车去某厂接劳模作报告,往返需1小时。该劳模在下午1点就离厂步行向学校走来,途中遇到接他的车,便坐上车去学校,于下午2点30分到达。问汽车的速度是劳模步行速度的()倍。 A.5 B.6 C.7 D.8 『2003年中央、机关军队文职考试录用考试』
2017军队文职考试岗位能力备考:容斥问题不靠公式也能解
对于许多考生来说,军队文职考试考试岗位能力中的容斥问题一直是难点,特别是一些复杂的三者容斥问题,单单靠记忆一些公式是难以解决的。红师教育老师建议考生,不记这些复杂的容斥原理公式也是可以的,关键要学会灵活运用容斥原理,尤其是利用文氏图结合容斥原理,一些问题可以轻松解决。 知识点总结 容斥原理:容斥原理是指计数时先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把重复计算的数目排斥出去。 容斥问题主要分为:两者容斥问题、三者容斥问题。 如何解决容斥问题:利用文氏图(划圈法)。 1.两者容斥问题 解决两者容斥问题的方法:如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,然后减掉重复计算的部分。
(x为重叠区域) 例:班级一共有240人,每个人必须至少有一门是好的,已知岗位能力好的是160人,申论好的是120人,问既岗位能力好又申论好的有多少人? (x为既岗位能力好又申论好的人) 解答:首先我们只需把岗位能力好、申论好的分别看成集合,然后用文氏图表示出来,其中x为重叠区域,我们需将其变为单层。160+120-x=240,解得x=40。 2.三者容斥问题 解决三者解决容斥问题的方法:如果被计数的事物有A、B、C三类,那么,先把A、B、C三个集合的元素个数相加,然后减掉重复计算的部分。 (1、2、3、x均为重叠区域) 简记:元素的总个数=大圈-中圈+数小圈(大圈指三类元素的个数和,中圈指题目中所给重叠区域(1、2、3、1+x、2+x、3+x、1+2+3+x),小圈为三层重叠区域x,利用此公式,我们只需数小圈即可。
例:有140人,每个人都至少喜欢一种花,已知喜欢玫瑰花的有80人,喜欢牡丹花的有70人,喜欢百合花的有60人,则分别在以下三种条件下,三种花都喜欢的有多少人? (1)喜欢玫瑰和牡丹的有30人,喜欢玫瑰和百合的有40人,喜欢牡丹和百合的有50人; (2)只喜欢两种花的有40人; (3)至少喜欢两种花的有50人。 解答:首先分析三个条件中重叠区域是哪部分,利用元素的总个数=大圈-中圈+数小圈,则大圈=80+70+60,中圈=30+40+50,其中大圈中x被加了三次,减中圈时x被减了三次,还需加一次x,故,解得x=50。(2)大圈=80+70+60,中圈=40,其中大圈中x被加了三次,减中圈时x一次也没有被减,因此需减2x,故,解得x=15。
总结:解决容斥问题,最重要的就是要分清题干中所给的重叠区域,然后从三层区域入手(小圈)将重叠区域变为一层。 3.容斥中的极值问题