江苏省军队文职考试考试岗位能力备考2017:十字交叉解题法

十字交叉法是由盈亏思想得到的,即多的总量等于少的总量,比如:50与60两个数的平均数为55,这里50比55少5,60比55多5,多的5等于少的5,才保证了50与60的平均数为55。下面具体看一道例题。 已知一个班级的一次考试成绩,男生的平均分为70分,女生的平均分为90分,全班总体的平均分为75分,求这个班级的男女生人数比为多少? 由以上两种解析可知:一、十字交叉法和等量关系列等式结果一致,但十字交叉法比等量关系式更直观快速。二、在运用十字交叉法时,大多数考生比较困惑的是利用十字交叉后得到的比是什么比,这里为什么3:1就是对应的男生人数与女生人数之比。这就需要我们用盈亏思想来说明十字交叉法的原理。

而女生的平均量是90分,说明每个女生比整体多15分。要想保证整体的平均分是75分,得多的总量与少的总量达到平衡,即多的总量=少的总量。而这里每个男生比整体少5分,男生共有x人,即总共少5x人;每个女生比整体多15分,女生共y人,既总共多15y人;故需5x=15y,得到x:y==3:1,也即交叉作差之比。而男生平均量=男生的总分数/男生人数;女生平均量=女生总分数/女生人数。所以交叉作差之比也是求两个平均量时的分母之比。