解放军文职招聘考试撰写名著,始创初等数学体系-解放军文职人员招聘-军队文职考试-红师教育
发布时间:2017-11-2219:12:02撰写名著,始创初等数学体系值此之前,希腊各学派积累了很多数学知识,但都没有形成比较完整的体系,到了亚历山大时期,希腊数学家们在柏拉图几何思想的启示下,开始将数学知识进行系统整理,使之脱离哲学而成独立学科,从用实验和观察而建立起来的经验科学,过渡为演绎的科学,把逻辑证明系统地引入数学中.完成此项具有划时代意义工作的是亚历山大前期第一个大数学家欧几里得(Eu-clid,约公元前330---前270),他撰写名著《几何原本》(Elemen-ts)开创了数学发展的新时期,使初等数学形成了体系.一、欧几里得《几何原本》产生的背景公元前338年,马其顿的菲力蒲王征服了雅典,希腊便沦为马其顿帝国的一部分,从此,雅典处于衰败的状态.在公元前336年时,菲力蒲王去世,由其子亚历山大大帝继承王位.亚历山大大帝野心勃勃,发动了空前的侵略战争,将文明世界的大部分区域并入新兴的马其顿帝国之版图.当亚历山大大帝进入埃及后,于公元前332年建造了亚历山大里亚城,公元前323年亚历山大大帝去世后,紧接着内部混乱,军阀割据,而埃及由托勒密(Ptolemy)掌管,他是亚里士多德的学生,并从老师那里学到了治学思想,便努力发展科学文化,繁荣经济,很快使亚历山大里亚成为当时世界的文化中心和商业中心,并创建了著名的博物馆和图书馆,培育了年轻一代学者.当时,这座繁荣的城市吸引着众多的有志学者,其中两个人是最主要的人物,他们有力地推动了数学的发展.他们是欧几里得和阿基米德.欧几里得的生平,现在知道的甚少,由帕波斯(Pappus,约300---350)记述,欧几里得在公元前300年左右,在托勒密王的邀请下,来到亚历山大里亚教学.人们称赞欧几里得治学精神严谨、谦虚,是一个温良敦厚的数学教育家.欧几里得在从事数学教育中,总是循循善诱地启发学生,提倡刻苦钻研,弄懂弄通,反对投机取巧、急功近利的狭隘思想.斯特比亚斯记述一个有趣的故事:一个学生学习几何时,才开始学习完一个定理,就问老师---;欧几里得,学了之后能得到什么好处呢?欧几里得说:给他三个钱币算了,他就想得到这点利益.欧几里得在从事数学教育中,善于积累数学知识,并进行了拓宽与创新.他的巨著《几何原本》是一生中最重要的工作,这部著作的形成具有无以伦比的历史意义.他精僻地总结了人类长时期积累的数学成就,建立了数学的科学体系,为后世继续学习和研究数学提供了课题和资料,使几何学的发展充满了活的生机.这部著作长时期被人崇拜、信仰,从来没有一本教科书,象《几何原本》那样长期广为传颂.从1482年到19世纪末,欧几里得《几何原本》的印刷本竟用各种文字印刷1000版以上,在此之前,它的手抄本统御几何学也已达近1800年之久.欧几里得继承和发展了前人的数学知识,《几何原本》所用到的材料大部分是希腊前期各学派创建的成果.据普罗克洛斯[Proclus,410(另一说412)---472]记载,欧几里得是柏拉图的门徒,他的著作基本沿续了柏拉图的传统思想,承袭了《共和国》中所论及的科学方法.欧几里得在《几何原本》中,发展了柏拉图的以哲学为基础,数论、几何、音乐、天文4科为内容的科学思想.另外,欧几里得还采用了欧多克索斯等学者的一些定理,并加以完善.《几何原本》所采用的公理、定理都是经过细致斟酌、筛选而成,并按严谨的科学体系进行编排,使之系统化、理论化,超过了以前的所有著作,因此,当《几何原本》问世之后,其它诸类逐渐消声匿迹了.欧几里得还曾撰写过其它的著作,据一些材料记载,主要是《光学》(Optica);《反射光学》(Catoptrica)解决镜的反射问题;《论音乐》(Sectiocanonis)研究音乐理论;《论天文现象》(Phaenomena),天文学的初步理论,主要解决天体运转、黄道分割等问题.
解放军文职招聘考试巴比伦人对数学的应用-解放军文职人员招聘-军队文职考试-红师教育
发布时间:2017-11-2219:07:58巴比伦人对数学的应用尽管巴比伦人的数学知识是粗浅的、有限的,但在他们的生产、生活中的很多方面都应用了数学.1.巴比伦人把数学应用到商业方面.巴比伦位于古代贸易的通道上,为便于商品交换、发展经济,他们用简单的算术和代数知识测量长度和重量,来兑换钱币和交换商品,计算单利和复利,计算税额以及分配粮食,划分土地和分配遗产等等.2.把数学应用到兴修水利上.巴比伦人应用数学知识计算挖运河、修堤坝所需人数和工作日数,也把数学应用到测定谷仓和房屋的容积,计算修筑时所需用的砖数等.3.把数学应用到天文研究方面.大约在亚述时代(公元前700年左右)开始用数学解决天文学的实际问题.在公元前3世纪之后,用数学知识来计算月球和行星的运动,并通过记录的数据,确定太阳和月球的特定位置和亏蚀时间.也应该注意到,巴比伦人观察天文现象,直接得出了作为以后三角学的基础概念.当时巴比伦人观察在天空中运行的星体,看它们在夭空中的位移情况.他们把天空看作半球面,因此测量不是在平面上,而必须是在球面上进行的.鉴于此,巴比伦人较早考察的是球面三角的概念,而不是平面三角的概念.也应该指出,在古巴比伦时期,当产生各种科学领域基本概念的同时,假科学也获得了发展.这种假科学与天文学、数学都有密切的关系,它们阻碍了数学的发展.这种假科学主要指星相术和数的神秘论.星相术认为单个人的生活和整个人类社会,都依赖于天空中的行星相互间的排列.即行星在人的生活中有影响,并且把它们崇拜为神.由此,他们作出了进一步的结论,由行星在天空中的相互排列,在一个人出生时就能够预言他将来的命运如何.这种星相术又从巴比伦传播到其他民族,阻碍了科学的发展.巴比伦人也曾把数神秘化.例如,当巴比伦人崇拜三个天体(太阳、月亮、金星)时,数码3便被看作幸福的.更晚一些时间,当已经崇拜7个天体时,数7就被当作幸福的.实际上,许多民族都赋予数3和7以神秘的意义.总之,星相术和数的神秘化,阻碍了人类的正确认识的发展.
2017年军队文职人员招聘考试(数学1)测试题及答案二(7月31日)-解放军文职人员招聘-军队文职考试-红师教育
2017年军队文职人员招聘考试(数学1)测试题及答案二(7月31日)发布时间:2017-12-2123:23:271).设方阵A满足AA=A,则必有A=O或A=E正确答案:错2).设A,B是n阶方阵,且秩A=秩B,则A.秩(A-B)=0B.秩(A+B)=2秩AC.秩(A-B)=2秩AD.秩(A+B)秩A+秩B正确答案:D