解放军文职招聘考试埃及数学的主要内容-解放军文职人员招聘-军队文职考试-红师教育

发布时间:2017-11-22 18:18:50埃及数学的主要内容根据埃及纸草书的记载,古埃及人对算术、代数、几何等数学知识已经有了初步认识,并能做简单地应用.现简要介绍如下:一、算术古埃及人所创建的数系与罗马数系有很多相似之处,具有简单而又纯朴的风格,并且使用了十进位制,但是不知道位值制.古埃及人是用象形文字来表示数的,例如根据史料记载,上述象形文字似乎只限于表示107以前数.由于是用象形文字表示数,进行相加运算是很麻烦的,必须要数 个位数 、 十位数 、 百位数 的个数.但在计算乘法时,埃及人采取了逐次扩大2倍(duplication)的方法,运算过程比较简便.乘法:古埃及人采用反复扩大倍数的方法,然后将对应结果相加.例如兰德纸草书(希特版)第32页,记载着12 12的计算方法,是从右往左读的.右边用现代数字表示,这就是倍增法(duplatio).由下表可知,计算的方法是把12依次扩大2倍,那么12 12为12的4倍加上12的8倍,恰是12的12倍,并把要加的数在右侧(现代阿拉伯数字在左侧)标记斜线,算得结果144.在更早的时期,埃及人也曾采用 减半法 来计算乘法.首先是将一乘数扩大10倍,然后再计算10倍的一半.例如纸草书(卡芬版)第6页,计算16 16,是按如下方法计算的,即减半法(mediatio)./1 16/10 160/5 80合计 256这种乘法的计算方法是古代人计算技能的基础,是非常古老的方法.希腊时期的学校曾讲授过埃及人的计算方法,到了中世纪,还讲授 倍增法 和 减半法 .除法:埃及人很早就认识到除法是乘法的逆运算,并蕴含在实际计算之中.例如,计算1120 80(见兰德纸草书第69页).1 80/10 8002 160/4 320合计 1120以上求解的基本思路是10倍的80加4倍的80,恰好是1120,即1120中含有14个80.分数:古埃及人对分数的记法和计算都比现在复杂得多.例如,他分叫做 第三部分 .例如,这样,通过二个部分与第三部分;三个部分与第四部分的结合来表示出一个整体.现在的西欧,有时也用第三(third)、第四(fourth)、第五(fifth)等语言来表达三分之一、四分之一这类分数的含义.按此规律理解,五分之一可认为与四个部分结合成一个整体的第五部分.从语言的角度,五分之二(twofifths)就无法表达了.随着分数范围的不断扩大,计算方法的不断改进,埃及人用 单位分数 (分子是1的分数)来表示分数:对一般分数则拆成 单位分数 表示①.例如,(用现代符号表示)

解放军文职招聘考试刘徽的数学成就-解放军文职人员招聘-军队文职考试-红师教育

发布时间:2017-11-22 19:20:28刘徽的数学成就一、刘徽生平刘徽是中国古代最伟大的数学家之一.他是三国时代魏国人,籍贯山东,生卒年不详,约死于西晋初年.刘徽出身平民,终生未仕,被称为 布衣 数学家.刘徽在童年时代学习数学时,是以《九章算术》为主要读本的,成年后又对该书深入研究,于公元263年左右写成《九章算术注》,刘徽自序说: 徽幼习《九章》,长再详览.观阴阳之割裂,总算术之根源.探赜之暇,遂悟其意,是以敢竭顽鲁,采其所见,为之作注. 刘徽在研究《九章算术》的基础上,对书中的重要结论一一证明,对其错误予以纠正,方法予以改进,并提出一些卓越的新理论、新思想.《九章算术注》是刘徽留给后世的十分珍贵的数学遗产,是中国传统数学理论研究的奠基之作.刘徽还著有《重差》一卷,专讲测量问题.他本来把《重差》作为《九章算术注》的第十卷,唐代初年改为单行本,并将书名改作《海岛算经》,流传至今.从刘徽著作来看,他学风严谨,实事求是,而且富于批判精神,敢于创新,理论研究相当深入,堪称数学史上的一代楷模.二、《九章算术注》此为刘徽的力作,反映了他在算术、代数、几何等方面的杰出贡献.1.算术(1)十进分数刘徽之前,计算中遇到奇零小数时,就用带分数表示,或者四舍五入.刘徽首创十进分数,用以表示无理根的近似值.这种记数法与现代刘徽用忽来表示,但a后各位就不必再命名了,刘徽称它们为 微数 ,说: 微数无名者以为分子,其一退以十为母,其再退以百为母.退之弥下,其分弥细. 这种方法,与我们现在开平方求无理根的十进小数近似值的方法一致,即其中a1,a2, ,an是0至9之间的一位整数.(2)齐同术《九章算术》中虽有分数通分的方法,但没有形成完整理论,刘徽提出齐同术,使这一理论趋于完善.他说: 凡母互乘子谓之齐,群母相乘谓之同. 又进一步提出通分后数值不变的理论依据,即 一乘一除,适足相消,故所分犹存 法实俱长,意亦等也 .前句话的意思是,一个分数用同一个(非零)数一乘一除,其值不变;后句话的意思是,分数的分子、分母扩大同一倍数,分数值不变.刘徽指出, 同 即一组分数的公分母, 齐 是由 同 而来的,是为了使每个分数值不变.另外,刘徽还将齐同术引而伸之,用来解释方程及盈不足问题.2.代数(1)对正负数的认识《九章算术》成书后,正负数的运算越来越广泛,但究竟应该如何认识正负数,却很少有人论及.刘徽在《九章算术注》中首次给出正负数的明确定义: 今两算得失相反,要令正负以名之. 就是说以正负数表示得失相反的量.他还进一步阐述正负的意义: 言负者未必负于少,言正者未必正于多. 即负数绝对值未必少,正数绝对值未必大.另外,他又提出筹算中表示正负数的两种方法:一种是用红筹表正数,黑筹表负数;再一种是以算筹摆法的正、斜来区别正、负数.这两种方法,对后世数学都有深远影响.(2)对线性方程组解法的改进《九章算术》中用直除法解线性方程组,比较麻烦.刘徽在方程章的注释中,对直除法加以改进,创立了互乘相消法.例如方程组刘徽是这样解的:(1) 2,(2) 5,得(4)-(3),得21y=20(下略).显然,这种方法与现代加减消元法一致,不过那时用的是筹算.刘徽认为,这种方法可以推广到多元, 以小推大,虽四、五行不异也. 他还进一步指出, 相消 时要看两方程首项系数的同异,同则相减,异则相加.刘徽的工作,大大减化了线性方程组解法.(3)方程理论的初步总结刘徽在深入研究《九章算术》方程章的基础上,提出了比较系统的方程理论.刘徽所谓 程 是程式或关系式的意思,相当于现在的方程,而 方程 则相当于现在的方程组.他说: 二物者再程,三物者三程,皆如物数程之.并列为行,故谓之方程. 这就是说: 有两个所求之物,需列两个程;有三个所求之物,需列三个程.程的个数必须与所求物的个数一致.诸程并列,恰成一方形,所以叫方程. 这里的 物 ,实质上是未知数,只是当时尚未抽象出未知数的明确概念.定义中的 皆如物数程之 是十分重要的,它与刘徽提出的另一原则 行之左右无所同存 ,共同构成了方程组有唯一组解的条件.若译成现代数学语言,这两条即:方程个数必须与未知数个数一致,任意两个方程的系数不能相同或成比例.刘徽还认识到,当方程组中方程的个数少于所求物个数时,方程组的解不唯一;如果是齐次方程组,则方程组的解可以成比例地扩大或缩小,即 举率以言之 .对于方程组的性质,刘徽总结出如下诸条: 令每行为率 ,即方程各项成比例地扩大或缩小,不改变方程组的解; 每一行中,虽复赤黑异算,无伤 ,即方程各项同时变号,不改变方程组的解; 举率以相减,不害余数之课也,即两方程对应项相减,不改变方程组的解.很明显,刘徽对于线性方程组的初等变换,已经基本掌握了.不过,他没有考虑交换两个方程的位置,因为不进行这种变换亦可顺利求出方程组的解,而且调换算筹的位置是不方便的.3.几何(1)割圆术刘徽以前,一般采用周三径一的圆周率,这是很不精确的.刘徽在《九章算术注》中指出:周三径一的数据实际是圆内接正六边形周长和直径的比值,不是圆周与直径的比值.他认为圆内接正多边形的边数越多,其面积就越接近圆面积.他从这一思想出发,创立了科学的求圆周率方法---割圆术.具体来说,就是以1尺为半径作圆,再作圆内接正六边形,然后逐渐倍增边数,依次算出内接正六边形、正12边形乃至正192边形的面积.刘徽之所以选半径为1,是为了使圆面积在数值上等于圆周率,从而简化运算.他利用公式(ln为内接正n边形边长,S2n为内接正2n边形面积)来求各正多边形面积.至于正多边形边长,他是反复利用勾股定理来求的.例如,由以下三式即可求得正12边形边长(图4.14):TR=OR-OT,后,便根据S192<S<S192+(S192-S96)刘徽舍弃分数部分,取圆面积为314平方寸,从而得到 =3.14、 这种方法可以求得任意精度的圆周率近似值,刘徽对这一点是很清楚的.不过,他根据当时的需要,运算中只取到两位小数.割圆术的创立是数学史上的一件大事.古希腊的阿基米德(Archimedes,公元前287---前212)也曾用割圆术求圆周率,他的方法是以圆内接正多边形和外切正多边形同时逼近圆,比刘徽的方法麻烦一些.刘徽的成就晚于阿基米德,但是独立取得的.(2)几何定理的证明刘徽采用出入相补原理,证明了《九章算术》中许多几何公式和定理.例如,他在证明三角形面积公式时,思路如下:把三角形的高h二自乘为青方,令出入相补,各从其类,因就其余不移动也,合成弦方之幂. 可惜的是原图失传,所以不知刘徽怎样 出入相补 .刘徽在研究立体几何时,发现 邪解堑堵,其一为阳马,一为鳖臑,阳马居二,鳖臑居一,不易之率也 .即 过对角面分割堑堵为一个阳马(图4 16中ABCDE)和一个鳖臑(图4 16中DEFC),则阳马与鳖臑的体积之比恒为二比一. 为叙述方便,我们称之为阳马定理.刘徽从长方体体积公式出发证明了这一定理,然后用它证明了各种多面体的体积公式.另外,他还发现了一条重要原理:对两个等高的立体,若用平行于底面的平面截得的面积之比为一常数,则这两立体的体积之比也等于该常数.这一原理可称为 刘徽原理 .在《九章算术注》中,刘徽多次运用了这一原理,例如,圆台体积∶外切正四梭台体积=圆面积∶外切正方形面积= ∶4.书中对圆锥、圆台等旋转体体积公式的推导,都是以刘徽原理为依据的.(3)对球体积的研究刘徽发现了《九章算术》中球体积公式不正确,试图利用刘徽原理求出正确的球体积公式.他首先作球的外切立方体,然后用两个直径等于球径的圆柱从立方体内切贯穿(图4.17).于是,球便被包在两圆柱相交的公共部分,而且与圆柱相切.刘徽只保留两圆柱的公共部分,取名 牟合方盖 .(图4.18)根据刘徽原理,球体积与牟合方盖体 体积,整个问题就迎刃而解了.刘徽没有成功,只好 以俟能言者 .但他的思路正确,为后人解决这一问题打下了基础.4.刘徽的极限观念从《九章算术注》可以看到,刘徽具有明确的极限思想.他把极限用于代数和几何研究,取得重要成果.这说明极限思想从春秋战国时期萌芽以后,到这时已有较大发展.例如,刘徽的割圆术便建立在极限理论的基础上.他说: 割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体而无所失矣. 就是说当圆内接正多边形的边数无限增加时,正多边形面积的极限便是圆的面积.他还把割圆术用于求弓形面积.如图4.19,刘徽在弓形内为弓形面积.显然,用此方法可使弓形面积达到任何需要的精确度.刘徽在研究开方不尽的问题时,认为求出的位数越多,就越接近真值,但永远不会达到真值,只能根据需耍,求到 虽有所弃之数,不足言之也 的程度.刘徽正是在这种极限观念的基础上创立十进分数的.他在征明有关体积的定理(如阳马定理)时也用到极限,并深刻地指出,极限问题 谓以情推,不用筹算 ,就是说研究极限靠思维和推理而不靠具体计算.